Solving Inverse Source Problems Using Observability. Applications to the Euler--Bernoulli Plate Equation
نویسندگان
چکیده
The aim of this paper is to provide a general framework allowing to use exact observability of infinite dimensional systems to solve a class of inverse source problems. More precisely, we show that if a system is exactly observable, then we can identify a source term in this system by knowing the corresponding intensity and appropriate observations which often correspond to the measure of some boundary traces. This abstract theory is then applied to a system governed by the EulerBernoulli plate equation. Using a different methodology, we show that exact observability can be used to identify both the locations and the intensities of combinations of point sources in the plate equation.
منابع مشابه
Spectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملInverse Problem for Coefficient Identification in Euler-Bernoulli Equation by Linear Spline Approximation
We display the performance of the technique called Method of Variational Imbedding for solving the inverse problem of coefficient identification in Euler-Bernoulli equation from over-posed data. The original inverse problem is replaced by a minimization problem. The EulerLagrange equations comprise an eight-order equation for the solution of the original equation and an explicit system of equat...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملRegularization of Parameter Problems for Dynamic Beam Models
The field of inverse problems is an area in applied mathematics that is of great importance in several scientific and industrial applications. Since an inverse problem is typically founded on non-linear and ill-posed models it is a very difficult problem to solve. To find a regularized solution it is crucial to have a priori information about the solution. Therefore, general theories are not su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 48 شماره
صفحات -
تاریخ انتشار 2009